欢迎来到21世纪教育网题库中心! 21世纪教育在线题库首页
21世纪教育网——题库

如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).

答案(1)见解析  (2)证明见解析   PQ=a

解析试题分析:(1)证明:∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,AB=AC,
∵AP=AQ,
∴BP=CQ,
∵E是BC的中点,
∴BE=CE,
在△BPE和△CQE中,

∴△BPE≌△CQE(SAS);
(2)解:连接PQ,
∵△ABC和△DEF是两个全等的等腰直角三角形,
∴∠B=∠C=∠DEF=45°,
∵∠BEQ=∠EQC+∠C,
即∠BEP+∠DEF=∠EQC+∠C,
∴∠BEP+45°=∠EQC+45°,
∴∠BEP=∠EQC,
∴△BPE∽△CEQ,

∵BP=a,CQ=a,BE=CE,

∴BE=CE=a,
∴BC=3a,
∴AB=AC=BC•sin45°=3a,
∴AQ=CQ﹣AC=a,PA=AB﹣BP=2a,
在Rt△APQ中,PQ==a.

考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;旋转的性质.
点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质以及勾股定理.此题难度较大,注意数形结合思想的应用.