欢迎来到21世纪教育网题库中心! 21世纪教育在线题库首页
21世纪教育网——题库

如图1所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1交AB的延长线于B1
(1)请你探究:是否都成立?
(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断.
(3)如图2所示Rt△ABC中,∠ACB=90︒,AC=8,AB=,E为AB上一点且AE=5,CE交其内角角平分线AD于F.试求的值.

答案(1)成立    (2)成立    (3)

解析试题分析:(1)两个等式都成立.理由如下:
∵△ABC为等边三角形,AD为角平分线,
∴AD垂直平分BC,∠CAD=∠BAD=30°,AB=AC,
∴DB=CD,
=
∵∠C1AB1=60°,
∴∠B1=30°,
∴AB1=2AC1
又∵∠DAB1=30°,
∴DA=DB1
而DA=2DC1
∴DB1=2DC1
=
(2)结论仍然成立,理由如下:
如右图所示,△ABC为任意三角形,过B点作BE∥AC交AD的延长线于E点,
∴∠E=∠CAD=∠BAD,
∴BE=AB,
∵BE∥AC,
∴△EBD∽△ACD,
=
而BE=AB,
=
(3)如图,连DE,
∵AD为△ABC的内角角平分线
=====
又∵==
=
∴DE∥AC,
∴△DEF∽△ACF,
==


考点:相似三角形的判定与性质;三角形的面积;角平分线的性质;等边三角形的性质;勾股定理.
点评:本题考查了相似三角形的判定与性质:平行于三角形一边的直线被其它两边所截,所截得的三角形与原三角形相似;相似三角形对应边的比相等.也考查了等边三角形的性质、含30°的直角三角形三边的关系以及角平分线的性质.