欢迎来到21世纪教育网题库中心! 21世纪教育在线题库首页
21世纪教育网——题库

在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ丄MP.设运动时间为t秒(t>0).
(1)△PBM与△QNM相似吗?以图1为例说明理由:
(2)若∠ABC=60°,AB=4厘米.
①求动点Q的运动速度;
②设△APQ的面积为S(平方厘米),求S与t的函数关系式.

答案(1)相似     (2)①每秒钟1cm    ②S=

解析试题分析:(1)相似.
证明:∵MN⊥BC交AC于点N,MQ丄MP,
∴∠BMN=∠PMQ=90°,
即∠BMP+∠PMN=∠PMN+∠NMQ,
∴∠PMB=∠NMQ,
∵△ABC与△MNC中,∠C=∠C,∠A=∠NMC=90°,
∴△ABC∽△MNC,
∴∠B=∠MNC,
∴△PBM∽△QNM;

(2)①在直角△ABC中,∠ABC=60°,AB=4厘米,
则BC=8cm,AC=12cm.
由M为BC中点,得BM=CM=4
若BP=cm.
∵在Rt△CMN中,∠CMN=90°,∠MCN=30°,
∴NC==8cm,
∵△PBM∽△QNM,
=
即NQ=1,
则求动点Q的运动速度是每秒钟1cm.
②AP=AB﹣BP=4t,
AQ=AN+NQ=AC﹣NC+NQ=12﹣8+t=4+t,
则当0<t<4时,△APQ的面积为:S=AP•AQ=(4t)(4+t)=
当t>4时,AP=t﹣4=(t﹣4)
则△APQ的面积为:S=AP•AQ=t﹣4)(4+t)=
考点:相似三角形的判定与性质;勾股定理.
点评:本题考查了相似三角形的判定与性质,以及相似三角形与函数的综合应用,利用时间t正确表示出题目中线段的长度是解题的关键.